Hydroxylation of ZnO/Cu(1 1 1) inverse catalysts under ambient water vapor and the water–gas shift reaction
نویسندگان
چکیده
منابع مشابه
Gold–ceria catalysts for low-temperature water-gas shift reaction
Nanostructured Au–ceria is a promising new catalyst for low-temperature water-gas shift (LTS). Preparation, characterization, and catalytic properties of this material are reported in this paper. Gold–ceria was prepared by deposition–precipitation (DP), coprecipitation (CP), and gelation methods. The gold loading was varied between 1 and 8.3 at.%, while lanthanum used as a dopant in ceria, was ...
متن کاملWater-gas Shift Reaction over Ceria-promoted Pt catalysts
Introduction The fuel processor in which hydrocarbon fuels can be converted into hydrogen has recently attracted much attention as a result of the advancement in the fuel cell technology. In a fuel processor, the water-gas shift (WGS) reaction plays a crucial role in the transformation of CO, a well-known poisonous gas to electrode of fuel cell, into hydrogen through reaction with steam. In WGS...
متن کاملActivity and stability of low-content gold–cerium oxide catalysts for the water–gas shift reaction
We report here on the high activity and stability of low-content gold–cerium oxide catalysts for the water–gas shift reaction (WGS). These catalysts are reversible in cyclic reduction–oxidation treatment up to 400 8C, are non-pyrophoric, and are thus potential candidates for application to hydrogen generation for fuel cell power production. Low-content (0.2–0.9 at.%) gold–ceria samples were pre...
متن کاملActive Sites and Mechanism for the Water-Gas Shift Reaction on Metal and Metal/Oxide Catalysts
Current industrial catalysts for the water-gas shift reaction are commonly mixtures of Fe-Cr and Zn-Al-Cu oxides, used at temperatures between 350-500oC and 180250oC, respectively. These oxide catalysts are pyrophoric and normally require lengthy and complex activation steps before usage. Improved catalysts are being sought, particularly for lower temperature (e.g., at T<150oC, equilibrium lowe...
متن کاملMorphology-Dependent Properties of Cu/CeO2 Catalysts for the Water-Gas Shift Reaction
CeO2 nanooctahedrons, nanorods, and nanocubes were prepared by the hydrothermal method and were then used as supports of Cu-based catalysts for the water-gas shift (WGS) reaction. The chemical and physical properties of these catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption/desorption, UV-Vis spectroscopy, X-ray photoelectron spectro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics D: Applied Physics
سال: 2019
ISSN: 0022-3727,1361-6463
DOI: 10.1088/1361-6463/ab37da